Topological analysis of a plant vacuolar Na+/H+ antiporter reveals a luminal C terminus that regulates antiporter cation selectivity.

نویسندگان

  • Toshio Yamaguchi
  • Maris P Apse
  • Huazhong Shi
  • Eduardo Blumwald
چکیده

We conducted an analysis of the topology of AtNHX1, an Arabidopsis thaliana vacuolar Na+/H+ antiporter. Several hydrophilic regions of the antiporter were tagged with a hemagglutinin epitope, and protease protection assays were conducted to determine the membrane topology of the antiporter by using yeast as a heterologous expression system. The overall structure of AtNHX1 is distinct from the human Na+/H+ antiporter NHE1 or any known Na+/H+ antiporter. It is comprised of nine transmembrane domains and a hydrophilic C-terminal domain. Three hydrophobic regions do not appear to span the tonoplast membrane, yet appear to be membrane associated. Our results also indicate that, whereas the N terminus of AtNHX1 is facing the cytosol, almost the entire C-terminal hydrophilic region resides in the vacuolar lumen. Deletion of the hydrophilic C terminus resulted in a dramatic increase in the relative rate of Na+/H+ transport. The ratio of Na+/K+ transport was twice that of the unmodified AtNHX1. This altered ratio resulted from a relatively small decrease in K+/H+ transport with a large increase in Na+/H+ transport. The vacuolar localization of the C terminus of the AtNHX1, taken together with the regulation of the antiporter selectivity by its C terminus, demonstrates the existence of luminal vacuolar regulatory mechanisms of the antiporter activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved salt tolerance in canola (Brasica napus) plants by overexpression of Arabidopsis Na+/H+ antiporter gene AtNHX1

A significant portion of the world’s cultivated land is affected by salinity that reduces crop productivity in these areas. Breeding for salt tolerance is one of the important strategies to overcome this problem. Recently, genetic engineering is becoming a promising approach to improving salt tolerance. In order to improve the yield performance of canola in saline soils, we transformed canola w...

متن کامل

Assessment of the vacuolar Na+/H+ antiporter (NHX1) transcriptional changes in Leptochloa fusca L. in response to salt and cadmium stresses

Sodium/proton exchangers (NHX) are key players in plant responses to salinity and have a central role in establishing ion homeostasis. NHXs can be localized in tonoplast or plasma membranes, where they exchange sodium ions for protons, resulting in the removal of ions from the cytosol into vacuole or extracellular spaces. In the present study, the expression pattern of the gene encoding Na+/H+ ...

متن کامل

DNA array analyses of Arabidopsis thaliana lacking a vacuolar Na+/H+ antiporter: impact of AtNHX1 on gene expression.

AtNHX1, a vacuolar cation/proton antiporter of Arabidopsis, plays an important role in salt tolerance, ion homeostasis and development. We used the T-DNA insertional mutant of AtNHX1 (nhx1 plants) and Affymetrix ATH1 DNA arrays to assess differences in transcriptional profiles and further characterize the roles of a vacuolar cation/proton antiporter. Mature, soil-grown plants were used in this ...

متن کامل

Altered Na+ and Li+ homeostasis in Saccharomyces cerevisiae cells expressing the bacterial cation antiporter NhaA.

The bacterial Na+ (Li+)/H+ antiporter NhaA has been expressed in the yeast Saccharomyces cerevisiae. NhaA was present in both the plasma membrane and internal membranes, and it conferred lithium but not sodium tolerance. In cells containing the yeast Ena1-4 (Na+, Li+) extrusion ATPase, the extra lithium tolerance conferred by NhaA was dependent on a functional vacuolar H+ ATPase and correlated ...

متن کامل

Tonoplast Na+/H+ Antiport Activity and Its Energization by the Vacuolar H+-ATPase in the Halophytic Plant Mesembryanthemum crystallinum L.

Tonoplast vesicles were isolated from leaf mesophyll tissue of the inducible Crassulacean acid metabolism plant Mesembryanthemum crystallinum to investigate the mechanism of vacuolar Na+ accumulation in this halophilic species. In 8-week-old plants exposed to 200 mM NaCl for 2 weeks, tonoplast H+-ATPase activity was approximately doubled compared with control plants of the same age, as determin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 100 21  شماره 

صفحات  -

تاریخ انتشار 2003